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Abstract, We study the effects of discreteness on the motion of coupled solitons of
two weakly coupled discrete sine—Gordon systems. A collective coordinate method
associated with Dirac’s formalism of constrained Hamiltonian dynamics is used to
derive the equations of motion for the centres of the solitons and for the dressing or
discreteness corrections of the continuum sclitons. We show that the dynamics of the
coupled solitons can be described by a set of two ron-linear differential equations.
It is also shown that the coupling reduces {increases) the trapping processes in the
case where the two solitons have the same polarity (different polarities). A numerical
analysis of the static dressing equations is performed. We find that the dressing
lowers the potential energy of solitons and increases the Peierls—-Nabarro barrier,

1. Introduction

The dynamics and statics of weakly coupled chains are now a subject of growing in-
terest. These systems, each with a specific type of coupling, occur in various branches
of physics; for instance, in electronics to describe the interaction between two parallel
long-Josephson junctions (Mineev et ol 1981, Holst ef el 1990), in condensed matter
physics to describe the frontier between two half-infinite arrays of atoms absorbed on
a metal surface (Coutinho et al 1981, Braun ef al 1988) and to describe the coupling
between polaron or magnon waves, and acoustic waves in elastic ferroelectric or ferro-
magnetic systems (Pouget and Maugin 1984, Maugin and Miled 1986). In biophysics,
it has recently been shown that the base—rotator dynamical model of a double helix
of deoxyribonucleic acid ¢an be described by a Hamiltonian in which the coupling is
due to the H-bond energy and dipole—dipole interaction energy (Yomosa 1983, 1984,
Takeno and Homma 1983, Homma and Takeno 1984, Zhang 1987, Gen-fa Zhou 1989).

Equations derived from the coupled systems are non-linear equations which, in the
continuum limit, give rise to non-linear waves or solitens with complicated dynamics
yet to be understood.

Because of the non-integrability of the coupled equaiions, the investigation of
soliton excitations has taken two principal directions. The first approach is to solve
the coupled equations for certain special cases as when the soliton of the second chain
has the same amplitude and velocity as that of the first chain. The second approach is
to solve the equation of motion in a general case hy means of the perturbation method.
Details are given in section 2.
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The weakly coupled sine~Gordon system is the most widely studied example. It
admits fluxon soliton solutions. Experimental, numerical and theoretical investiga-
tions of this system perturbed by small damping and power input mechanisms have
produced interesting results. For instance, it has been demonstrated that due to dis-
sipation, fluxons belonging to different chains or junctions can fuse into a bound state
(bifluxon). In addition radiative effects accompanying the collision of the two fluxons
have been observed (Kivshar and Malomed 1988, Holst et al 1990, Grgnbech-Jensen
et al 1990).

These important results characterizing the propagation of the coupled solitons are
obtained in the continuum medium where the soliton extensions are large compared
with the lattice spacing, When this is not the case, the continuum approximation be-
comes inadequate to describe the motion of the solitons and the discreteness should be
taken into account explicitly. Up until now, published works concerning the influence
of the discreteness of the physical systems have focused on systems with single-soliton
solutions. Interesting results have been obtained. In general, the solitons become
trapped by the Peierls-Nabarro lattice potential {Nabarro 1967) and their motion oc-
curs with dissipation (Aubry 1978, Peyrard and Remoissenet 1982, Combs and Yip
1983, Peyrard and Kruskal 1984, Willis et al 1986, Stancioff ef al 1986, Boesch ef al
1989, Woafo ef al 1991).

Qur aim in this paper is to model a solution of the motion of solitons of the cou-
pled systems with the effects of discreteness taken into account. The particular model
considered is the weakly coupled sine-Gordon system, the basic ideas of which we
review in section 2. The continuum description is presented and the two approaches
mentioned earlier are developed. In section 3, we present the theory of the effect
of discreteness. The mathematical foundation of the theory is the collective coordi-
nate method associated with Dirac’s constrained Hamiltonjan dynamics (Dirac 1964,
Tomboulis 1975). New dynamical variables are introduced: the positions of the cen-
tres of the solitons and the corrections or dressings on the continuum soliton solutions
due to discreteness. By means of a suitable canonical transformation, we derive an
equation of motion in these new variables. We discuss the particular limit where
the discreteness corrections can be neglected. It is found that the coupled solitons
experience the periodic Peierls~Nabarro potential.

In section 4, a numerical analysis is performed to solve the discrete equations of
dressings. It is found that the inclusion of the static dressing lowers the depth of the
Peierls~Nabarro potential. Section 5 summarizes our conclusions and ideas for further
work.

2. Weakly coupled sine—Gordon systems

2,1, The model

Our discrete model consists of two coupled one-dimensional sine-Gordon chains of
particles with equal masses m = 1. Each chain is characterized by a harmonic elastic
constant J and a natural period constant b. These constants are set equal to unity.
A particle of the chain is subjected to the sinusoidal potential

V(U) = (1/a®)(1 - cos U)

where @ is a constant which measures the amplitude of the sinusoidal potential and
U is the displacement of the particle from its equilibrium site. Denoting by Y; the



Solitons tn a weakly coupled discrete sine-Gordon system 811
displacement of the particle on the first chain in cell ¢ and by W, the same quantity
on the second chain, we can express the total energy or Hamiltonian of the system as
(the dot stands for the time derivative)

H=Hy+ Hy (2.1}

N
Ho=3) (W + W24 330 Fogs = %+ (Wi = W)

i=1
1 N
+ F;(?—cos}’i — cos W;) (2.2)
and
N
H = —e_Z}(x-H — V) (Wiys — W), (2.3)

H, is the expression for the total energy of the two sine-Gordon systems with no
coupling. H, denotes the interaction energy. It takes into account the interaction be-
tween the relative displacements of particles in both chains. € is the coupling constant
between the chains. It is assumed to be small and positive throughout this paper.

The Hamiltonian (2.1), with an appropriate scaling, can be seen as the total energy
of two discrete parallel long-Josephson junctions inductively coupled (Mineev et al
1981, Kivshar ef al 1988, Holst ef el 1990, Grgnbechk-Jensen ef al 1990). In this
sense, Y; and W, represent fluxons that propagate along the junctions and the time
derivatives of Y; and W; are the voltages. Hj is then a discrete version of the energy
of topelogical charges in the two coupled long-Josephson chains. In the case where
H describes the Hamiltonian of two coupled chains of adatoms, Hy accounts for the
interaction between the density of the excess adatorns in both paraliel adatomic chains
(Braun et al 1988).

The equations of motion derived from (2.1} are

Yo + Y -2 -V - i SnY; = (W, +W,_; —2W;)  (2.4a)
Wiga + Wioy —2W, - W, - ;1'2' sinW, = e(Yoy, +Y,, - 2Y;)  (24h)

where the dots are differentiations with respect to time £,

To solve equations (2.4), we shall assume the continuum approximation U;(t) —
Uz, t) and Uy, + U;_y = 2U; = Uy, (U; = Y, W,). Then equations (2.4) reduce to
(the subscript 2z is the spatial second derivative of the function )

. 1.
Y, -Y - 3 sinY =eW,, (2.5a)

Wa, — W — % sin W = ¢Y,,. (2.5b)
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When ¢ = 0, the system turns into uncoupled, exactly integrable sine-Gordon
equations. The solutions corresponding to fluxons or kinks (antifiuxons or antikinks)
are

Y%(z,t) = 4tan™ exp(0,7(2,)Z;) (2.6a)
Wo(z,1) = 4 tan~ exp(oy7(v,y) Z,) (2.60)
where

Z; = (x —v;t)/a (1=1,2)

y(v;) = 1/(1 - v)'/?

and o,, 0, = =1 are the polarities of the kinks. The plus (minus) sign corresponds to
the kink (antikink). v; are the kink’s velocities. We assume for the rest of the paper
that v; < 1 and the Lorentz contraction factor y(v;) reduces to unity.

When ¢ # 0, the interaction between the junctions distorts the solitons’ shape and
the system (2.5) cannot be solved exactly. However, it is easy tosee that Y = W =
is a solution of the system (2.5) and that the case W =0,Y #0 (or W #0,Y =0)
reduces the system to the well known sine-Gordon equation which has recently been
analysed theoretically and numerically in the discrete limit by many authors (Peyrard
and Kruskal 1984, Willis ef ol 1986, Stancioff ef al 1986, Boesch et al 1989). The case
where there are non-linear excitations in both chains will be divided into two parts.
The first part concerns some special assumptions for which the system of equations
becomes uncoupled and yields special solutions. In the second part, the system is
solved by expanding its solutions in power series of the coupling constant e,

2.2. Special solutions

In addition to the particular cases mentioned earlier, another interesting case is W =
+Y. In this case, the system of equation (2.5) reduces to a sine-Gordon equation with
a small correction to the disperson coefficient {coefficient of ¥, or W, ).

Y — (1 F €)Y, + (1/a®)sinY = 0. (2.7)

The single-soliton solution of equation (2.7) is

Y(z,t) = 4tan™? {exp (JIE—J——— .,11:6:’1’5)} . (2.8)

2.3, Perturbation method

In the general case where |Y| # |W|, there is currently no exact solution for equa-
tion (2.3). Since the coupled chains are similar (e.g. they have the same physical
parameters), we assume that the difference between Y| and |W| appears in the posi-
tions of the centres of the two solitons. This assumption is fulfilled when the initial
waves entering the chains (or transmission lines) have the same amplitude and ve-
locity, Intrachain damping, inhomaogeneities and external noises can cause one of the
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solitons to be slightly slowed down or accelerated. The difference will be characterized
by a parameter d standing for the spatial distance between the two solitons.

d=X, - X, (2.9)

where X, and X, are, respectively, the positions of the centres of the first (¥') and
the second (W) solitons. In the continuum limit, X; = v;t + X; where X,; are the
initial positions of the solitons. One should recall that 4 is a small parameter since we
have assumed slight acceleration or deceleration.

Remembering that the coupling constant ¢ is small, it is reasonable to expand the
solution of equations (2.5) into an ¢ power series (Zhang 1987, Braun e al 1988) which
would have the form

Y = Y% 4 €Y 4 O(e?) W =W+ W+ 0(e?) (2.10)

and Y? and W? are soliton solutions (2.6) of the uncoupled equations (¢ = 0). Inserting
(2.10) into (2.5) and assuming that ¥ and W' are solitary waves with the same
velocities as Y® and W (the perturbations ¥! and W are distortions of the kink
shapes) one obtains

Yz,z, = (2tanh’® 0, Z; — 1)Y! — 2sech 0,7, tanh 0, Z, (2.10a)
W3,z, = (2tanh® 0,2, ~ NW' - 2sech 0, 7, tanh e, Z,. (2.106)

Equations (2.10) are linear ordinary differential equations. They have been inte-
grated numerically (for apy d) and analytically (for d = 0) by using the associated
Legendre polynomials of the first and second kind. While solving equations (2.10) one
assumes that the solitons Y and W tend asymptotically to 2r for 2, = +o0 and to
zero for Z; = ~00. It is also assumed that Y] = 7 and [W| =7 for Z; = 0 (j = 1,2).
Under these constraints and after some algebraic manipulations (see Zhang (1987)),
the perturbation solutions may be written as

Y= :!:{ sech 0, Z,(0,Z; + In2tanh e, Z; — tan~' tanh o, Z;)

2
—sinhey Z, In (-————-——-——1 + tanzh alzl) }

w!= :i:{ sech 0,Z,(0,Z, + In 2tanh 0y Z, — tan™" tanh 0, 7,)

tanh®
—sinheo,Z, In (I—La%ﬂ—é) }

The plus sign corresponds to the case where the two solitons have the same polarity
and the minus sign for opposite polarities. Numerical calculation reveals that Y'! and
W1 slightly change the shape of the uncoupled solutions ¥'® and W0.
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3. Discreteness effects theory

The study of the dynamics of topological solitons has been facilitated by the dis-
covery of the collective coordinate method (Branco et al 1974, Gervais and Sakita
1975, Tomboulis 1975). This method, currently applied to non-linear field theories
that possess exact space-dependent solutions, is based on the introduction of two
new dynamical variables: a coordinate describing the position of the soliton’s centre
and another coordinate which is a small amplitude field accounting for the radiated
phonons that occur during the propagation of the solitons.

Recently Flesch et af (1987) have used this theory to describe the motion of the
Klein—Gordon kink in the presence of a weak, localized perturbation. Also, a com-
plete Hamiltonian dynamics of discrete kinks has been developed (Willis et al 1986).
We follow this approach to study the motion of discrete coupled solitons. Since the
coupling parameter is assumed to be small and the coupling distortions negligible, we
can assume for this complicated problem that the solution of equations (2.5) is given
by (2.6). That is Y (z,t) =~ ¥Y°(z,?) and W(z,t) > WO(z,?).

The discrete variables Y; and W, are separated in the following manner:

Y, = F1:(Xy) + by W; = fo,i(Xa) + ¥ (8.1)

where

fji =4tan" exp (aj #&)
are the continuum soliton solutions at the cell i (z; = i since b = 1). The 3, ; field
will account for the discrete corrections or dressing of the continuum solitons and for
the radiated phonons emitted by the solitons during their propagation, In addition,
because of the coupling, part of ¢, ; might be due to the coupling corrections of the
soliton’s shape since (2.6) is not the exact continuum solutions of equations (2.5).
Transformation (3.1) yields

Y= '¢’1,£ + X1f§,1=‘)(xl) W= "j’z.i + Xzfg.li)(xz) (3.2)

where the superseript (1) denotes the differentiation of f;¢ with respect to X;. In
order to conserve the number of degrees of freedom which has been increased by the
introduction of X; and ¢, ;, the system is subjected to the following conditions of
constraint:

N N
C; =D AP =0 Gy =3 f2(X)), =0 (3.3)
i=1 i=1

The transformation (3.1} and (3.2) under constraints (3.3) is a canonical transfor-
mation (Tomboulis 1975). Introducing (3.1) and (3.2) into the discrete Hamiltonian
(2.1), one obtains

P].2 P22 1 Y 2 1 a 2 -
H = g+ gy APt ket Vil )

i=] i=1

N N
+ Z Vot + fo0) + Z Vig($y s + [t + F20) (3.4)

i=1 i=1
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with
Vit + F50) = 585000+ Fiogn — 50— 5107 + aiz(l — cos(¥; i + £;.:))
Via($ri+rotbgithog) = =€t i — Y1, L)Wz + faien — Y2 — fo3)

M Z(f_fl)(}{ )) Pj = M;X; Pii = 'j’_,- i

¥
i=1

P; and p; ; are, respectively, the conjugate momenta of variables X; and ¢, ; and the
MJ are the dlmensmnl@s masses of the solitons.

Under constraints (3.3), we are in the presence of a constrained dynamical system.
Thus, we can apply Dirac’s formalism of constrained Hamiltonian dynamics (Dirac
1964). Following the formalism elaborated by Willis et al (1986) one obtains the
equations of motion for the dynamical variables X;

dM; oYy
- 12 Y

M%; + 1 X = (3.5)
with
;. (1)
BX —_Zf, (X H g0+ im0 — 25+ Fiaqr + Fiamn — 255

1 .
— = sin(¥; ; + £;:)} + Ezfjg,li)(xf)
i=1
X Wyri00F Gyrimy = 2505+ fjan + Fj ooy — 2505} (3.6)

and for the dressing ¥; ;
" -
Vs =Y — 255+ Fiam + fiio— 28— gsm(w,bj". Ffi) e~ f(ﬂ(X )

din M;
SRR e

- f(',b,'l"'_l,l + 'ibj",l'—l - Ql’bj',l' + fj',i-{-l + f:,'f,;_l - 2,}?1',‘) (37)

where (7,7) =(1,2) or (2, 1).
Since the parameter d, due to the slight deceleration or acceleration of one of the
two coupled solitons, is considered to be small, one can write

£i4(X5) = fyr (X)X ). (3:8)

The plus sign is for j = 1 and the minus sign for § = 2.
In the case where the soliton width a » &, all 9;; approach zero. Then, after
using the Taylor expansion of f; iz to the fourth-order derivative, that is

fross = Fyak S04 £ 90 4 L g0
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with the aid of (3.8) and the identity f; (2') = (1/a®)sin f; ;, (3.6) reduces to

8U,
where

Fj(Xj) r zl:f(l)f(‘it) (3.95)
and

Gi(X; )~Z W x { 78 4 f““)}idz fm(X){f(s' f;’;"}. (3.9¢)

The notation f('"") stands for the mth-order derivative of f;; with respect to the
integer 1 a.ssumed for the circumstance to behave like a continuous real variable.

F;(X;) and the first part of G;(X;) are odd in X; while the second part of G;(X;)
is even in X, ;. Moreover, F;(X,) and G 1(X;) are per:odlc functions in X; with a penod
equal to the natural penod b. Hence, we can expand these quantities in a Fourier series.
After some algebraic calenlations, we obtain the following results:

ﬁ? = -;(an + 0y0,¢G;,) sin(27n X, ) & 0, 09¢d (Cju + Z C;ncos(2mnX; ))

n=1
(3.10a)
where
1 47r3n2
Fin rm(29.+ 1) (3.106)
1672n?
Gin = —Fjn — Soh(er?a) T S e mes e (3.100)
4x%n —16
Cin = a? sinh(n'.'r?a){ 1542 (g +1)(g, +4)
(1es+"1 )( 1) 4+i) 3.10d
QS 3(12 ( . )
and
4 /4 7
CJO = “"“g' (g — W) (3108)
with
2,2 2
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In formula (3.10a), we have the plus sign for j = 1 and the minus sign for j = 2.
We have also found that the dimensionless mass M;(X; ) has a periodic structure like
the potential energy U;:

o0
M;(X;) = M;o + Y _ M;, cos(2anX,) (3.11a)
=1
where
2
My =16/a  and M, = —2 B _ (3.11b)

% ™ sinh(nw2a)’

It is clear that we have the same Fourier coefficients for § = 1 and for j = 2.
Because of the presence of the hyperbolic sine functions in the denominators of the
Fourier coefficients, the contribution of second-order harmonics or more can be ne-
glected. Then, the equations of motion for the centres of the coupled solitons are
coupled through a set of two non-linear differential equations in the form

MX, + %Xf%—g—l = E;sin(27X;) — 0,00¢6(X; — X,)
1
. x (Cyp + C1q cos(27X,)) (3.12q)
L4 1 '2dM2 .
M, X, + §X2—d-X— = By sin(27X,) + 0y05¢( X, — X,)
2
X (Clﬂ -+ Cll COS(?WXz)) (3.12&)

where we have substituted d by X, — X, and

1673

TR (3.13)

E| =(1~¢o,05)F); — coy09

Setting ¢ = 0 in (3.12), we obtain two uncoupled equations of motion for the solitons’
centres. In the case where the distance between the two moving solitons is equal to
zero (d = 0; X; = X,), equations (3.12) reduce to a single equation, for example

2 40,

1 3%, = B, sin(2r X, ). (3.14)

MX, +1iX
The quantity Epy = E,/7 stands for the Peierls-Nabarro potential amplitude
(Nabarro 1967). One can immediately see that the presence of the coupling between
the chains induces a modification of the trapping potential. This modification is mea-
sured by the variation

E, — Fyy) — €0,0,G
T T

E':(

v

(3.15)

of the Peierls—Nabarro potential barrier.

The expression of E, suggests that, when the two solitons have the same polarity
(e.g. the kink-kink and antikink-antikink), the pinning potential barrier suffered by
the kink is smaller than that experienced by a single soliton of a single sine~Gordon
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chain since E, < 0. The opposite situation is observed when the polarities are different
(e.g. the propagating solitons are a kink in the first chain and an antikink in the second
chain). If it is assumed that M; ~ M, since M;, € M;,, then from equation (3.14),
one obtains the small-amplitude frequency W, of the soliton in the potential well
located at X; = § (the middle of a cell of the system)

W? = 27 E, /M;,. (3.16)

The presence of the hyperbolic sine functions in the denominator of EPN and W2
make these quantities decrease exponentially when the soliton width a increases,

When ¢;; # 0, the full equation of dressing (3.7) has to be analysed. In the
one-component field systems such as the sine~Gordon or ¢* model, it has been shown
that the dressing 4, ; has important effects on dynamical properties such as the kink
pinning frequency W the depth of the Pelerls—-Nabarro potential and the spoataneous
radiation of phonons by the moving kink (Combs and Yip 1983, Stancioff et of 1986,
Boesch ef el 1989). Section 4 which follows deals with the numerical investigation of
the static form of the dressing equation (3.7) for certain special cases. The effect of the
static solution for ¥; ; on dynamical properties of the soliton’s motions is presented.
The full dynamical equa.tmn will be analysed in a further paper.

4. Numerical analysis of static dressing: effects on the Peierls-Nabarro
depth

When the soliton width is reduced to a few natural periods of the system, 1; ; cannot
be neglected in tne calculation of the potential force —9U;/8X;. This section is
devoted to the analysis of the effects of ¥, ;, which accounts for the difference between
the continuum and discrete shapes of t.ile solitons, on the Peierls-Nabarro barrier.
However, because of the complexity of the model, we have restricted our computations
to some physically justifiable special cases.

The dressings in the static form verify the non-linear discrete equation:

1
Vit F ¥ — 25— g sin(y + i) + S + framn = 2055
+ e(Wynipr + Yy = 2500+ Fjoaga + g = 2f55) = 0. (4.1)

Since a similar equation can be written by changing the positions of § and j' it is easy
to reduce (4.1) into the form

Y41 T ¥yim1 — 205 — '1‘ Siﬂ(¢j,i + f;0)+ fii
+fj,t' 1 2fjs+ SIn(wg'i';'f':) =0 (42)

where we have used ¢ < 1.
Assummg that the ; ; are small enough to justify the expansion of the sine ex-
pression in the manner sm(ub_, i+ 5) =¥ cos f;; +sin f; 4, equation (4.2) becomes

€
— i+ (2 + =5 cos f; ,) Y= W1 — (? cos j'.:‘) Yo

1 .
= fj"'.*,]_ + f~'£_ 2]’} ;= smf 2 smfj.,,-. (4.3)
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In matrix notation, equation (4.3) has the form

A;v; + Apiy =F | (4.4)
where

‘lpj=(..., J'.!'"") ¢j’=("" J'I'i'o--)

¥ 1. £
= i+ fiim1 = 2 — infys + gsinfr g
) .

(A )lk = I J=1 + (2+ COSfJ ) ik 6i—1,k

and

€

(Aj‘?ik = (“;5 cos j',i) bix

whete 8, is the Kronecker delta.

Recalling that. the coupled chains have the same physical parameters, we can
correctly set ¥, ; = 9;;(d = 0) when the two solitons have the same polarity and
i = —Yin when the polarities are different. Then equations (4.4) reduce to the

tridiagonal matrix problem

Ay, =F (4.5)

submitted to constraints (3.3) with the matrix elements (A);, given by

1
(A)ik = —5,_";;_1 -+ (2 + — COS f 2 COS fjr“) 6!,’6’.’ - 6:'__1 k

The negative (positive) sign corresponds to kink-kink (kink-antikink) propagation.
We have considered a system of N unit cells with N = 200. The solitons’ centres
are situated far from the extreme points of the system in order to avoid end effects.
Since the dressings are localized around the solitons, we have truncated the matrix A
by attributing the value zero to ¢, ; for all ¢ whlch are not contained in the integer
domain (int (5a), N-int (5a)) where nt (8a) is the integer obtained from the conversion
of real 5a to the integer type. The parameter a is the soliton width and therefore
plays the role of the discreteness parameter. During the numerical caleulation, we
have observed that the magnitude of the constraint C; increases with the coupling
parameter. For instance, it does not exceed 2 x 10~% for ¢ = 0. For ¢ = 0.0001,
Cj = 2% 10~® and for ¢ = 0.01, it reaches 7 x 10~%, The e-dependence of the constraint
can be explained by this fact. When the coupling parameter increases, the distortion
of the soliton’s shape also increases so that for some range of the coupling parameter,
the zero-order perturbation solution f; ; taken as the solitcns’ shape is invalid. Taking
the first-order perturbation solution f +eY}(eW}'), we have obtained a reductlon in

C; by 5%. It is clear that the constra.mts Ci are always satisfied since z{;}’, =
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Figure 1. Shape of the continuum scliton f,;  Figure 2. Static dressing 15, as & function of
plotted against i — X fora = 2. the distance from the centre of the soliton for
e = 2 and ¢ = 0.0005.

When ¢, ; is added to the soliton shape, we observe that the deviation from the
continuum shape given in the cell i by f; . (figure 1) increases when a decreases. But
the deviation still remains small even 1f ¢ is reduced to one natural period of the
system. Figure 2 shows the plot of the static dressing 4, ; (which is a measure of the
deviation from the continuum model) for @ = 2 and ¢ = 0.0005.

In the dynamical regime, it has been shown that the modification of the soliton’s
shape due to the discreteness is always accompanied by a strong emission of phonons.
Consequently, this produces a decrease in the soliton velocity and the trapping pro-
cesses (Currie ef al 1977, Combs and Yip 1983, Peyrard and Kruskal 1984). In recent
studies analysing the trapping potential in the ¢* chain (Combs and Yip 1983) and
in the sine~Gordon chain (Sta.ncioﬂ' et al 1986), it was observed that the inclusion
of the static dressing ¢, ; in the soliton solution lowers the potential and increases
dramatically the depth of the potential. This yields incidentally the increase of the
pinning frequency defined by (3.16). Similar results are obtained in the present paper.

In figure 3( e}, we compared the Peierls—Nabarro barrier obtained numerically with-

out dressing to that obtained with dressing for 1 § @ € 2.5. The figure shows an
exponential decrease of the barrier as the soliton width increases. This decrease is
also observed for large values of the kink width (a > 2.5). The square of the pinning
frequency is plotted as function of kink width in figure 3(}). It appears from figure 3
that due to the inclusion of dressing, the Peierls—Nabarro barrier and the square of
the pinning frequency are multiplied by a factor whose value is contained in the real
interval (1.1, 1.3}, The shapes of Epy and W, are in agreement with the theoretical
predictions of section 3 where we obtained an exponential decay of Epy (3.13). The
modification of the potential amplitude given by the formula (3.16) has also been
obtained in our numerical work. This suggests that in the case where both solitons
have the same polarity, the trapping process is slightly reduced in a coupled system
compared with what obtains in a single sine-Gordon lattice. When the polarities are
different, the opposite holds, i.e. the trapping process is somewhat reduced in the
single sine—Gordon lattice compared with the coupled system:.
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Figure 3. (s} Peierls-Nabarro barrier Epn in hundreds as a function of kink width
for ¢ = 0.0005. The dotied curve is the dressed barrier and the broken curve is the
barrier without dressing. (3) The pinning frequency W, in hundreds obtained after
inclusion of dressing as a function of kink width ¢ for the same coupling constant as

{a).

5. Conclusion

In the present paper, we have studied the effects of the discreteness of two weakly
coupled sine-Gordon systems on the motion of the coupled solitons. After reviewing
some analytical solutions of the systems in the continuurm limit, we have carried out
the collective coordinate method in which the coordinates X; of the solitons’ centres
appear as dynamical variables. In addition, due to the discreteness, the continuum
solitons’ shapes were dressed by ¥; . The variables X; and Vi have been expressed as
functionals of the continum shape f_, ; of the soliton by the requxrement of constraining
conditions. By using Dirac’s formalism for constrained Hamiltonian systems, we have
shown that the motion of the coupled solitons can be modelled by a set of two coupled
non-lnear differential equations.

An equation for the dressing 9, ; has been obtained. We have analysed its static
form. It has been shown that the inclusion of dressing effects considerably improves
the accuracy in estimates of dynamical quantities such as the pinning frequency and
the depth of the pinning potential.

At present, the full dynamical equation of dressing has not been analysed. It is
hoped that the Green function method applied to the inhomogeneous partial differ-
ential equation resulting from a bound Taylor expansion of the dressing, will lead to
an explicit time dependence for the energy potential. In an approximate calculation
such as ours, it would be interesting to analyse the full non-linear dressing equation in
a general way since, because of the coupling, the contribution of the non-linear terms
might not be negligible. When this has been done, the application of the theory devel-
oped in this paper to some more complicated coupled models such as protein molecular
chains, should lead to new important developments in the field of the propagation of
coupled non-linear waves.

Due to the mathematical complexity of the coupled system, our model calculations
have only covered a limited class of solitons (kink~kink and kink-antikink) solutions
separated by a small distance parameterized by d. An analytical investigation for
a possible generalization of our calculations to large values of parameter d is under
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consideration and will be published in a future work. Another interesting problem in
connection with the discrete coupled chains is the analysis of the interaction between
a topological soliton (kink or antikink} moving in one chain and the breather-like
solution in the other chain.
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