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Dynamics of solitons in a weakly coupled discrete 
sine-Gordon system 

P Woafo, T C Kofane and A S Bokosah 
Laborstoire de M&-que. FacultC des Sciences, UniversitC de Yaound6, B P 812, 
YaoundC, Cameroun 

Received 10 April 1991, in final form 19 August 1981 

Abstract. We study the effects of discreteness on the motion of coupled solitons of 
two wealdy coupled discrete sine-Gordon systems. A collective coordinate method 
associated with Dirac’s formaljsm of constrained Hamiltonian dynamics is used to 
derive the equations of motion for the centres of the solitons and for the dressing OP 

discreteness comctions of the continuumsolitons. W e  show that the dynamicsof the 
coupled solitans can be demibed by a set of two Eon-linear differential equations. 
It is also shown that the coupling reduces (increases) the trapping processes in the 
-e where the two solitons have the s- polarity (different polarities). A numerical 
analysis of the static dressing equations is performed. We find that the &sing 
lowen the potential energy of solitons and increases the Peierls-Nabmo barrier. 

1. Introduction 

The dynamics and statics of weakly coupled chains are now a subject of growing in- 
terest. These systems, each with a specific type of coupling, occur in various branches 
of physics; for instance, in electronics to describe the interaction between two parallel 
long-Josephson junctions (Mineev el a1 1981, Holst ef 01 19901, in condensed matter 
physics to describe the frontier between two half-infinite arrays of atoms absorbed on 
a metal surface (Coutinho et  a1 1981, Braun et a/ 1988) and to describe the coupling 
between polaron or magnon waves, and acoustic waves in elastic ferroelectric or ferrc- 
magnetic systems (Pouget and Maugin 1984, Maugin and Miled 1986). In biophysics, 
it has recently been shown that the base-rotator dynamical model of a double helix 
of deoxyribonucleic acid can be described by a Hamiltonian in which the coupling is 
due to the H-bond energy and dipoledipole interaction energy (Yomosa 1983, 1984, 
Takeno and Homma 1983, Homma and Takeno 1984, Zhang 1987, Gen-fa Zbou 1989). 

Equations derived from the coupled systems are non-linear equations which, in the 
continuum limit, give rise to non-linear waves or solitons with complicated dynamics 
yet to be understood. 

Because of the non-integrability of the coupled equations, the investigation of 
soliton excitations has taken two principal directions. The first approach is to solve 
the coupled equations for certain special cases as when the soliton of the second chain 
has the same amplitude and velocity as that of the first chain. The second approach is 
to solve the equation of motion in a general case by means of the perturbation method. 
Details are given in section 2. 

0953-8984/92/030809+14$03,50 @ 1992 IOP Publishing Ltd 809 
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The weakly coupled sine-Gordon system is the most widely studied example. It 
admits fluxon soliton solutions. Experimental, numerical and theoretical investiga- 
tions of this system perturbed by small damping and power input mechanisms have 
produced interesting results. For instance, it has been demonstrated that due to d i s  
sipation, fluxons belonging to different chains or junctions can fuse into a bound state 
(bifluxon). In addition radiative effects accompanying the collision of the two fluxons 
have been observed (Kivshar and Malomed 1988, Holst et a/ 1990, Gr0nbech-Jensen 
e1 a/ 1990). 

These important results characterizing the propagation of the coupled solitons are 
obtained in the continuum medium where the soliton extensions are large compared 
with the lattice spacing. When this is not the case, the continuum approximation be- 
comes inadequate to describe the motion of the solitons and the discreteness should be 
taken into account explicitly. Up until now, published works concerning the influence 
of the discreteness of the physical systems have focused on systems with single-soliton 
solutions. Interesting results have been obtained. In general, the golitons become 
trapped by the Peierls-Nabarro lattice potential (Nabarro 1967) and their motion ocr 
curs with dissipation (Aubry 1978, Peyrard and Remoissenet 1982, Combs and Yip 
1983, Peyrard and Kruskal 1984, Willis et a/ 1986, Stancioff et  al 1986, Boescb et a/ 
1989, Woafo ef al 1991). 

Our aim in this paper is to model a solution of the motion of solitons of the cou- 
pled systems with the effects of discreteness taken into account. The particular model 
considered is the weakly coupled sineGordon system, the basic ideas of which we 
review in section 2. The continuum description is presented and the two approaches 
mentioned earlier are developed. In section 3, we present the theory of the effect 
of discreteness. The mathematical foundation of the theory is the collective coordi- 
nate method associated with Dirac’s constrained Hamiltonian dynamics (Dirac 1964, 
Tomboulis 1975). New dynamical variables are introduced: the positions of the cen- 
tres of the solitons and the corrections or dressings on the continuum soliton solutions 
due to discreteness. By means of a suitable canonical transformation, we derive an 
equation of motion in these new variables. We discuss the particular limit where 
the discreteness corrections can be neglected. It is found that the coupled mlitons 
experience the periodic Peierls-Nabarro potential. 

In section 4, a numerical analysis is performed to solve the discrete equations of 
dressings. It is found that the inclusion of the static dressing lowers the depth of the 
Peierls-Nabarro potential. Section 5 summarizes our conclusions and ideas for further 
work. 

2. Weakly coupled sine-Gordon systems 

2.1. The model 

Our discrete model consists of two coupled one-dimensional sineGordon chains of 
particles with equal masses m = 1. Each chain is characterized by a harmonic elastic 
constant J and a natural period constant b. These constants are set equal to unity. 
A particle of the chain is subjected to the sinusoidal potential 

V ( V )  = (1/2)(1- COSV) 

where a is a constant which measures the amplitude of the sinusoidal potential and 
U is the displacement of the particle from its equilibrium site. Denoting by the 
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displacement of the particle on the first chain in cell i and by Wi the same quantity 
on the second chain, we can express the total energy or Hamiltonian of the system as 
(the dot stands for the time derivative) 

H = H o + H I  (2.1) 

with 

N 1 + - C(2 - C O S T  - cos W;) 
i d  

and 

(2.3) 

H ,  is the expression for the total energy of the two sineGordon systems with no 
coupling. H, denotes the interaction energy. It takes into account the interaction b e  
tween the relative displacements of particles in both chains. c is the coupling constant 
between the chains. It is assumed to be small and positive throughout this paper. 

The Hamiltonian (2.1), with an appropriate scaling, can be seen as the total energy 
of two discrete parallel long-Josephson junctions inductively coupled (Mineev el al 
1981, Kivshar et al 1988, Holst et al 1990, Grmnbech-Jensen et a1 1990). In this 
sense, yi and W, represent fluxons that propagate along the junctions and the time 
derivatives of Y, and Wj are the voltages. HI is then a discrete version of the energy 
of topological charges in the two coupled long-Josephson chains. In the case where 
H describes the Hamiltonian of two coupled chains of adatoms, HI accounts for the 
interaction between the density of the excess adatoms in both parallel adatomic chains 
(Braun et al 1988). 

The equations of motion derived from (2.1) are 

- 1 .  Y. +Yj-1-2Yi-Y,- -smYi  = C ( W , + , + W , - ~ - ~ W ~ )  (2.4a) 

Witl + W;-l - 2Wi - Wi - - sin Wi = c (Y ,+ ,  + yi-l - 2 y i )  (2.46) 
a2 

s t 1  a2 

.. 1 .  

where the dots are differentiations with respect to time f. 
To solve equations (2.4), we shall assume the continuum approximation Ui( t )  -+ 

U ( z , t )  and Uitl + U,-l - 2U, U U2=(U6 = x ,W, ) .  Then equations (2.4) reduce to 
(the subscript 2x is the spatial second derivative of the function U) 

.. 1 . 
Yz, - Y - - sin Y = cWzz (2.5a) 

a2 

.. 1 .  W,, - W - -sin W = cYzZ. a2 (2.5b) 
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When c = 0, the system turns into uncoupled, exactly integrable sineGordon 
equations. The solutions corresponding to fluxons or kinks (antifluxons or antikinks) 
are 

y0(z, t )  = 4tan-I exp(uly(wl)Zl) 

w0(z,t) = 4tan-' exp(u,y(wz)Z2) 

(2.6a) 

(2.66) 

where 

Zj = (z  - wjt)/a ( j  = 1,2) 
2 112 

Y ( V j )  = 1/(1 - V j )  

and ul ,  uz = fl are the poIarities of the kinks. The plus (minus) sign corresponds to 
the kink (antikink). wj are the kink's velocities. We assume for the rest of the paper 
that uj < 1 and the Lorentz contraction factor y(uj) reduces to unity. 

When c # 0, the interaction between the junctions distorts the solitons' shape and 
the system (2.5) cannot be solved exactly. However, it is easy to see that Y = W = 0 
is a solution of the system (2.5) and that the case W = 0, Y # 0 (or W # 0, Y = 0) 
reduces the system to the well known sineGordon equation which has recently been 
analysed theoretically and numerically in the discrete limit by many authors (Peyrard 
and Kruskal 1984, Willis e l  a1 1986, Stancioff el a1 1986, Boesch et al 1989). The case 
where there are non-linear excitations in both chains will be divided into two parts. 
The first part concerns some special assumptions for which the system of equations 
becomes uncoupled and yields special solutions. In the second part, the system is 
solved by expanding its solutions in power series of the coupling constant c. 

2.8. Special solutions 

In addition to the particular cases mentioned earlier, another interesting case is W = 
&Y. In this case, the system of equation (2.5) reduces to a sineGordon equation with 
a small correction to the disperson coefficient (coefficient of Yz, or W%). 

Y - (1 r c ) ~ ~ ,  + (1/az)sinY = O. (2.7) 

The singlesoliton solution of equation (2.7) is 

~ ( z , t )  = 4tan-I { exp ( u1 -E)}, 
2.3. Perturbation method 

In the general case where IYI $ IWI, there is currently no exact solution for equ- 
tion (2.5). Since the coupled chains are similar (e.g. they have the same physical 
parameters), we assume that the difference between IYI and IWI appears in the posi- 
tions of the centres of the two solitons. This assumption is fulfilled when the initial 
waves entering the chains (or transmission lines) have the same amplitude and ve- 
locity. Intrachain damping, inhomogeneities and external noises can cause one of the 
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solitons to he slightly slowed down or accelerated. The difference will be characterized 
by a parameter d standing for the spatial distance between the two solitons. 

d = X , - X ,  (2.9) 

where X I  and X ,  are, respectively, the positions of the centres of the first (Y) and 
the second (W) solitons. In the continuum limit, X ,  = u j t  + X o j  where Xoj  are the 
initial positions of the solitons. One should recall that d is a small parameter since we 
have assumed slight acceleration or deceleration. 

Remembering that the coupling constant c is small, it is reasonable to expand the 
solution of equations (2.5) into an z power series (Zhang 1987, Braun et al1988) which 
would have the form 

Y = YO +CY' + O ( 2 )  W = WO + E W '  + O(c2) (2.10) 

and Y o  and WO are soliton solutions (2.6) of the uncoupled equations ( 6  = 0). Inserting 
(2.10) into (2.5) and assuming that Y' and W' are solitary waves with the same 
velocities as Y o  and WO (the perturbations Y' and W' are distortions of the kink 
shapes) one obtains 

Y& = (2tanh2u,Z1 - 1)Y' - 2sechu2Z2 tanhuzZz (2.100) 

W&,. = (2tanh2u2Z2 - 1)W' - 2sechu1Zl tanhuIZ1. (2.106) 

Equations (2.10) are linear ordinary differential equations. They have been inte- 
grated numerically (for any d )  and analytically (for d = 0) by using the associated 
Legendre polynomials of the first and second kind. While solving equations (2.10) one 
assumes that the solitons Y and W tend asymptotically to 27r for 2, = +ca and to 
zero for Zj = -co. It is also assumed that IYI = a and IWI = a for Zj = 0 (j = 1,2). 
Under these constraints and after some algebraic manipulations (see Zhang (1987)), 
the perturbation solutions may be written as 

sechulZl(ulZl +In2tanhulZl - tan-'tanhalZl) 

- sinh ulZ, In 

W' = rt sechazZ2(u,Z, +In2tanhu2Z2 - tan-'tanhir,Z,) { 
- sinh u2Z2 In 

The plus sign corresponds to the case where the two solitons have the same polarity 
and the minus sign for opposite polarities. Numerical calculation reveals that Y' and 
W' slightly change the shape of the uncoupled solutions Y o  and W O .  
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3. Discreteness effects theory 

The study of the dynamics of topological solitons has been facilitated by the dis- 
covery of the collective coordinate method (Branco el a1 1974, Gervais and Sakita 
1975, Tomboulis 1975). This method, currently applied to non-linear field theories 
that possess exact space-dependent solutions, is based on the introduction of two 
new dynamical variables: a coordinate describing the position of the soliton’s centre 
and another coordinate which is a small amplitude field accounting for the radiated 
phonons that occur during the propagation of the solitons. 

Recently Flesch et a1 (1987) have used this theory to describe the motion of the 
Klein-Gordon kink in the presence of a weak, localized perturbation. Also, a com- 
plete Hamiltonian dynamics of discrete kinks has been developed (Willis et  al 1986). 
We follow this approach to study the motion of discrete coupled solitons. Since the 
coupling parameter is assumed to be small and the coupling distortions negligible, we 
can assume for this complicated problem that the solution of equations (2.5) is given 
by (2.6). That is Y(a,t)  Y Yo(z,t) and W(z, t )  rr Wo(z , t ) .  

The discrete variables Yi and Wi are separated in the following manner: 

yi = f I , i (XJ + $1,; w; = fz,;(X2) + $2,; (3.1) 
where 

are the continuum soliton solutions at the cell i (2; = i since 6 = 1). The Ilj,; field 
will account for the discrete corrections or dressing of the continuum solitons and for 
the radiated phonons emitted by the solitons during their propagation. In addition, 
because of the coupling, part of $j,i might be due to the coupling corrections of the 
soliton’s shape since (2.6) is not the exact continuum solutions of equations (2.5). 

Transformation (3.1) yields 

g = 41,i + %f$+X1) wi = 4 2 , i  + x 2 f ~ : i m  (3.2) 
where &he superscript (1) denotes the differentiation of ji,, with respect to Xj. In 
order to conserve the number of degrees of freedom which has been increased by the 
introduction of Xj and $ j , i ,  the system is subjected to the following conditions of 
constraint: 

The transformation (3.1) and (3.2) under constraints (3.3) is a canonical transfor- 
mation (Tomboulis 1975). Introducing (3.1) and (3.2) into the discrete Hamiltonian 
(2.1), one obtains 



P, and pj,< are, respectively, the conjugate momenta of variables Xj and +j,i and the 
M, are the dimensionless masses of the solitons. 

Under constraints (3.3), we are in the presence of a constrained dynamical system. 
Thus, we can apply Dirac’s formalism of constrained Hamiltonian dynamics (Dirac 
1964). Following the formalism elaborated by Willis et 01 (1986) one obtains the 
equations of motion for the dynamical variables X, 

with 

and for the dressing $j,i 

+ CWjJ,itl + $j , , i - l  - Wjj:i + f j . , i t l  + fjti-I - 2fjt.i) (3.7) 

where ( j , j ’ )  = (1,2) or (2, 1). 

two coupled solitons, is considered to be small, one can write 
Since the parameter d, due to the slight deceleration or acceleration of one of the 

fjJXj) Y fj,JXj,) f dfj$(Xj,). ( 3 4  

The plus sign is for j = 1 and the minus sign for j = 2. 

using the Taylor expansion of fj,i*l to the fourth-order derivative, that is 
In the case where the soliton width a > b, all $ j , i  approach zero. Then, after 
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with the aid of (3 .8)  and the identity fi;:) = (l/a2)sin f,,,, (3.6) reduces to 

B l l  - = Fj(Xj) + 'G,(X,) SXj 

where 

(3.9a) 

(3.9b) 

and 

The notation J$?) stands for the mth-order derivative of f,,i with respect to the 
integer i assumed for the circumstance to behave like a continuous real variable. 

F,.(Xj) and the first part of C j ( X j )  are odd in Xj while the second part of Gj(Xj) 
is even in Xj, Moreover, Fj(Xj) and Gj (Xj) are periodic functions in Xj with a period 
equal to the natural period b.  Hence, we can expand these quantities in a Fourier series. 
After some algebraic calculations, we obtain the following results: 

and 

(3.10e) 

with 

2 2 2  qa=a n a .  
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In formula (3.10a), we have the plus sign for j = 1 and the minus sign for j = 2. 
We have also found that the dimensionless mass Mj(Xj) has a periodic structure like 
the potential energy (5.: 

where 

16n2n Mjo = 16/a and M. = 
I" s i n h ( n A ) '  

(3.11~) 

It is clear that we have the same Fourier coefficients for j = 1 and for j = 2. 
Because of the presence of the hyperbolic sine functions in the denominators of the 
Fourier coefficients, the contribution of second-order liarmonics or more can be ne- 
glected. Then, the equations of motion for the centres of the coupled solitons are 
coupled through a set of two non-linear differential equations in the form 

x (CUI + Cllcos(~ax2))  

where we have substituted d by XI - X ,  and 

(3.12b) 

(3.13) 
16m3 

'sinh(rZa)' 
E, = (1 - CblU2)Fl1  - € U  U 

Setting f = 0 in (3.12), we obtain two uncoupled equations of motion for the solitons' 
centres. In the case where the distance between the two moving solitons is equal to 
zero (d = 0; X, = X z ) ,  equations (3.12) reduce to a single equation, for example 

(3.14) 
dM 

'dX, ~~2~ + IXz -J  = E,sin(2rXI). 

The quantity EPN = E, / r  stands for the Peieris-Nabarro potential amplitude 
(Nabarro 1967). One can immediately see that the prewnce of the coupling between 
the chains induces a modification of the trapping potential. This modification is mea- 
sured by the variation 

(3.15) 

of the Peierls-Nabarro potential barrier. 
The expression of E, suggests that, when the two solitons have the same polarity 

(e.g. the kink-kink and antikink-antikink), the pinning potential barrier suffered by 
the kink is smaller than that experienced by a single soliton of a single sineGordon 
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chain since E, < 0. The opposite situation is observed when the polarities are different 
(e.g. the propagating solitons are a kink in the first chain and an antikink in the second 
chain). If it is assumed that Mj Mjo since Mjl a Mjo, then from equation (3.14), 
one obtains the small-amplitude frequency W, of the soliton in the potential well 
located at Xj = 3 (the middle of a cell of the system) 

W; = 2sE1/Mjo. (3.16) 

The presence of the hyperbolic sine functions in the denominator of EPN and W," 
make these quantities decrease exponentially when the soliton width a increases. 

When $j,; # 0, the full equation of dressing (3.7) has to be analysed. In the 
onecomponent field systems such as the sineGordon or b4 model, it has been shown 
that the dressing $j,i has important effects on dynamical properties such w the kink 
pinning frequency W,, the depth of the Peierls-Nabarro potential and the spontaneous 
radiation of phonons by the moving kink (Combs and Yip 1983, Stancioff ef al 1986, 
Boesch ei a1 1989). Section 4 which follows deals with the numerical investigation of 
the static form of the dressing equation (3.7) for certain special ewes. The effect of the 
static solution for Gj,; on dynamical properties of the soliton's motions is presented. 
The full dynamical equation will be analysed in a further paper. 

4. Numerical analysis of static dressing: effects on the Peierls-Nabarro 
depth 

When the soliton width is reduced to a few natural periods of the system, Gj,; cannot 
be neglected in tne calculation of the potential force -aUj/aXj. This section is 
devoted to the analysis of the effects of $. . which accounts for the difference between 
the continuum and discrete shapes of ti: solitons, on the Peierls-Nabarro barrier. 
However, because of the complexity of the model, we have restricted our computations 
to some physically justifiable special cases. 

The dressings in the static form verify the non-linear discrete equation: 

1 .  
a2 $j,itl + 4~j,;-~ - 2$j,i - -sln($j,; + fj,;) + fj,jt1 + fj,i-l - 2fj,; 

+ € ( $ j , , i + i  + Vjjt , ; - i  - 2$j,,j + fj,,<+i + fjr,;-i - 2fj3,;) = 0. (4.1) 
Since a similar equation can be written by changing the positions of j and j' it is easy 
to reduce (4.1) into the form 

1 .  
$j+tl f $j,i-I - wj,; - - a2 " ( $ j , i  + fj,d + f j , i t l  

(4.2) 
€ .  + f,,i-l - 2fj,; + + fjt,;) = 0 a2 

where we have used c2 < 1. 
Assuming that the qbj,$ are small enough to justify the expansion of the sine ex- 

pression in the manner sin(rl,,; + f,,;) U $j , j  cosf,,, + sinfj,;, equation (4.2) becomes 
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In matrix notation, equation (4.3) has the form 

Aj+j t Ajr+jj. = F 

$. I = (. .. ,?bj,;, . . .) 

(4.4) 

where 

+j,  = (. . . ,*j,,i,. . .) 

1 .  
a2 

fj,;+l + f,,;-l - 2fji,; - -sin fj,; + 

and 
= (--cos c fj,,,) 4, 

a2 

where 6,, is the Kronecker delta. 
Recalling that the coupled chains have the same physical parameters, we can 

correctly set = t,bj,Jd = 0) when the two solitons have the same polarity and 
t+bj,,,{ = -4j,,, when the polarities are different. Then equations (4.4) reduce to the 
tridiagonal matrix problem 

A$j = F (4.5) 

submitted to constraints (3.3) with the matrix elements (A); ,  given by 

The negative (positive) sign corresponds to kink-kink (kink-antikink) propagation. 
We have considered a system of N unit cells with N = 200. The solitons’ centres 

are situated far from the extreme points of the system in order to avoid end effects. 
Since the dressings are localized around the solitons, we have truncated the matrix A 
by attributing the value zero to $j,j for all i which are not contained in the integer 
domain (int (5a), N-int (5a)) where i t  (5a) is the integer obtainedfrom the conversion 
of real 5a to the integer type. The parameter a is the soliton width and therefore 
plays the role of the discreteness parameter. During the numerical calculation, we 
have observed that the magnitude of the constraint Cj increases with the coupling 
parameter. For instance, it does not exceed 2 x for t = 0. For c = 0.0001, 
Cj = 2 x lo-’ and for c = 0.01, it reaches 7 x The +dependence of the constraint 
can be explained by this fact. When the coupling parameter increases, the distortion 
of the soliton’s shape also increases so that for some range of the coupling parameter, 
the zero-order perturbation solution fj,; taken as the solitcns’ shape is invalid. Taking 
the firstorder perturbation solution j,,, + c%l(cW:), we have obtained a reduction in 
Ci by 5%.  It is clear that the constraints Cj are always satisfied since dj,, = 0. 
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i - x  I-" 

Figure 1. Shape of the continuum soliton I,,, 
plotted apaimt i - X for a = 2. 

Figure 2. Static dressing $,,i ea a function of 
the distance from the centre of the soliton for 
LL = 2 and c = 0.0005. 

When +j,i is added to the soliton shape, we observe that the deviation from the 
continuum shape given in the cell i by fj,; (figure 1) increases when (I decreases. But 
the deviation still remains small even if a is reduced to one natural period of the 
system. Figure 2 shows the plot of the static dressing $j,i (which is a measure of the 
deviation from the continuum model) for a = 2 and e = 0.0005. 

In the dynamical regime, it has been shown that the modification of the soliton's 
shape due to the discreteness is always accompanied by a strong emission of phonons. 
Consequently, this produces a decrease in the soliton velocity and the trapping pro- 
cesses (Currie el al 1977, Combs and Yip 1983, Peyrard and Kruskal 1984). In recent 
studies analysing the trapping potential in the q44 chain (Combs and Yip 1983) and 
in the sineGordon chain (Stancioff et (11 1986), it was observed that the inclusion 
of the static dressing +j , i  in the soliton solution lowers the potential and increases 
dramatically the depth of the potential. This yields incidentally the increase of the 
pinning frequency defined by (3.16). Similar results are obtained in the present paper. 

In figure 3(a), we compared the Peierls-Nabarro barrier obtained numerically with- 
out dressing to that obtained with dressing for 1 < a < 2.5. The figure shows an 
exponential decrease of the barrier as the soliton width increases. This decrease is 
also observed for large values of the kink width (a  2 2.5). The square of the pinning 
frequency is plotted as function of kink width in figure 3(b). It appears from figure 3 
that due to the inclusion of dressing, the Peierls-Nabarro barrier and the square of 
the pinning frequency are multiplied by a factor whose value is contained in the real 
interval (1.1, 1.3). The shapes of EPN and WP are in agreement with the theoretical 
predictions of section 3 where we obtained an exponential decay of EPN (3.13). The 
modification of the potential amplitude given by the formula (3.16) has also been 
obtained in our numerical work. This suggests that in the case where both solitons 
have the same polarity, the trapping process is slightly reduced in a coupled system 
compared with what obtains in a single sineGordon lattice. When the polarities are 
different, the opposite holds, i.e. the trapping process is somewhat reduced in the 
single sineGordon lattice compared with the coupled system. 
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a- 4 

Figure 3. (e) Peierls-Nabarro barrier EPN in hundreds as LL function of kink width 
for L = 0.0005. The dotted m e  is the dressed barrier and the broken curve is the 
barrier without dressing. (a)  The pinning frequency W, in hundreds obtained after 
inclusion of dressing eg a function of kink width D for the -e coupling constant h~ 

(a). 

5. Conclusion 

In the present paper, we have studied the effects of the discreteness of two weakly 
coupled sineGordon systems on the motion of the coupled solitons. After reviewing 
some analytical solutions of the systems in the continuum limit, we have carried out 
the collective coordinate method in which the coordinates Xj of the solitons’ centres 
appear as dynamical variables. In addition, due to the discreteness, the continuum 
solitons’shapes were dressed by Il;.,i. The variables Xj and $,,i have been expressed as 
functionals of the contiuum shape jj!i of the soliton by the requirement of constraining 
conditions. By using Dirac’s formallsm for constrained Hamiltonian systems, we have 
shown that the motionof the coupled solitons can be modelled by a set of two coupled 
non-linear differential equations. 

An equation for the dressing $j , i  has been obtained. We have analysed its static 
form. It has been shown that the inclusion of dressing effects considerably improves 
the accuracy in estimates of dynamical quantities such as the pinning frequency and 
the depth of the pinning potential. 

At present, the full dynamical equation of dressing has not been analysed. It is 
hoped that the Green function method applied to the inhomogeneous partial differ- 
ential equation resulting from a bound Taylor expansion of the dressing, will lead to 
an explicit time dependence for the energy potential. In an approximate calculation 
such as ours, it would be interesting to analyse the full nodinear dressing equation in 
a general way since, because of the coupling, the contribution of the non-linear terms 
might not be negligible. When this has been done, the application of the theory devel- 
oped in this paper to some more complicated coupled models such as protein molecular 
chains, should lead to new important developments in the field of the propagation of 
coupled non-linear waves. 

Due to the mathemat.ical complexity of the coupled system, our model calculations 
have only covered a limited class of solitons (kink-kink and kink-antikink) solutions 
separated by a small distance parameterized by d. An analytical investigation for 
a possible generalization of our calculations to large valuea of parameter d is under 



a22 P Woafo et  a1 

consideration and will be published in a future work. Another interesting problem in 
connection with the discrete coupled chains is the analysis of the interaction between 
a topological soliton (kink or antikink) moving in one chain and the breather-like 
solution in the other chain. 
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